Appendix 5-C Examples of Applying Ecology's Landscape Analysis The following pages present examples of how Ecology's landscape analysis can be applied in local jurisdictions in Washington. Examples are provided for two local jurisdictions: the City of Leavenworth and Whatcom County. #### Approach - Step 1 Identify regional problems - Step 2 Determine water flow processes Topography to draw sub-basins Determine initial water flow patterns Use geologic info & soils to refine flow patterns Draw profile & finalize flow patterns - Step 3 Summarize natural water flow processes - Step 4 Identify areas where land use alters natural conditions - Step 5 Identify restoration opportunities #### Step 1 - Identify regional problem - √ Flooding - ✓ Water qualityDownstream Erosion - ✓ Loss of historic habitat - ✓ Loss of habitat connectivity Leavenworth Fault represents a major shear zone Glaciers advanced several times from the south into the Ski Hill area and then receded. Each time they receded they left terminal moraines. **General Location** of Moraines #### Groundwater Movement Affected by the Fault The fault shear zone creates a path of lower resistance for groundwater flow, so groundwater moving down-gradient will tend to follow the fault line. This results in the lower basins receiving water contributed from upper basins, greatly increasing the quantity of water being delivered. Step 4 – Identify areas where land use (existing/proposed) alters natural conditions ### Preliminary Conclusions Based on Review & Analysis of Water Flow Alterations - The Ski Hill area has historically been a very wet area due to a combination of geology, slope, and faulting. - Initial analysis indicates that the bedrock area draining to the Leavenworth Fault is the primary source of groundwater in Ski Hill - Water processes in the bedrock area have not been significantly altered (i.e., natural conditions exist). - The lower, smaller area of the basin (Ski Hill area) has little influence on the quantity of groundwater flow present. - The increasing wetness is probably due to climatic changes in the past decade. (Since drought of '92 rainfall has increased) ### Preliminary Conclusions Based on Review & Analysis of Water Flow Alterations.... - Groundwater is forced to the surface by two terminal moraines at the southern extent of the alluvial formation - The surface water problems in Ski Hill: - Appear to be exacerbated by ditching, curtain drains, and below grade structures which intercept groundwater flow and convert to surface flow, accelerating delivery of that water to lower portion of the Ski Hill area. - Additional development in this area, without a comprehensive restoration plan and low impact development standards, would significantly increase the flooding and water quality problems Step 5 – Identify restoration opportunities ### Results Since Presentation of This Study to City of Leavenworth - City submitted a grant proposal to Department of Community, Trade, & Economic Development to prepare a "green infrastructure" plan for the Ski Hill area. - City was awarded the grant - City is reviewing three proposals for a "green infrastructure" plan - Plan completion expected by winter 2004 # Analysis and Characterization of Functions and Ecosystem-wide Processes for SMP Update Whatcom County July 28, 2004 1 ### Why Analyze & Characterize Ecosystem Wide Processes? - Required by the new shoreline guidelines - Provides a framework for developing the shoreline plan - Identifies important ecosystem relationships within the County - Identifies areas sensitive to changes from land use - Identifies areas for protection or restoration of resources - Identifies areas where restoration can correct current problems 2 #### Characterization of Functions & Processes Requires Application of the Following Steps (WAC Section 173-26-201(3)d)i) - 1. Identify & assess ecosystem-wide processes and ecological functions and determine their relationship. - 2. Identify ecological functions and ecosystem-wide processes that are healthy, altered, impacted, and missing. - 3. Identify measures to protect and restore ecosystemwide processes and ecological functions. 3 ### Executive Summary Identify Objectives – Dakota Sub-basin | 13311311 33 | | | 2311333 3313 133311 | | | | |--|--|--|---|---|--|--| | Relevant Process & or Function – Unaltered Conditions | Existing or
Potential
Environmental
Issue | Altered
Functions
and
Processes | Protection &
Restoration
Objectives | Protection –
Mechanism &
Measures | Restoration
Mechanism | | | Low summer
baseflow Recharge
function is low to
moderate over
large area of
watershed | Potential:
Reduced diversity
of aquatic
organism.
Increased
mortality of
smolts. | Recharge
function is
reduced in areas
of drained
depressional
wetlands and
tilled soils | Maximize
recharge | Increase
infiltration:
Retain forest
cover
Protect
depressional
wetlands in
upper watershed
Minimize
impervious
cover | Restore native
cover and
wetlands in areas
of highest
recharge function | | | Reduced tidal
flushing Water quality
function is
high for most of
the watershed
except for
confining units
on steep slopes | Existing: Water quality impacts. Closure of Drayton harbor shellfish beds. Reports of harmful algal blooms. Cause – fecal coliform and nutrients | Water quality
function is
reduced in areas
of drained
wetlands, tilled
soils, and
cleared forest
/shrub cover | Maximize
residence time | Protect existing
depressional
wetlands &
forest cover | Restore wetlands
below areas with
highest degree of
alteration
Restore
forest/shrub cover | | ### Organizing Your Approach to the Characterization and Analysis - What existing information is helpful? - Quantitative studies - Qualitative descriptions - Different scales - Different geographic extents - (Too much info) - Identify information that helps develop the analysis . # Step 1. Identify and assess ecosystem-wide processes & ecological functions and determine their relationship - Collect base information for analysis area - Describe ecosystem-wide processes at the landscape scale - Describe the functions for the landscape scale- - Describe ecosystem-wide processes at the subbasin scale - Describe the functions at the sub-basin scale- - Analyze and describe relationship of processes to functions in the shoreline Base Landscape Landscape Sub-Basin Sub-Basin Relationship #### Geologic Hazards • Map of landslides, alluvial fans, etc??? 13 | WRIA
Sub basin | Precipitation Assumptions: <25" Very Low; 25-30" = Low; 30-45" = Mod; 45-7" = High | Ratin-on-Snow
Assumptions: | Baseflow Assumptions: <60% of annual stream flow = Low 60 to 70% = Mod; >70% = High | | |------------------------------|--|-------------------------------|---|--| | Drayton | Low | None | Low | | | Birch Bay | Very Low | None | Low
(BPJ – based on small basing
and confining formation) | | | Kamm/Bertrand/
Fishtrap | Low to High | None | High | | | Sumas River | Moderate to High | Very Low? | | | | Scott/Wiser/
Schneider | Low | None | | | | Upper Nooksak
Tributaries | High | Very High | Moderate | | | Upper Mainstem
Nooksack | Mod to High | High | Mod to High | | | Lower Mainstem
Nooksack | Low to Mod | Mod | Mod | | | Landform Type | Aquifer Recharge
(includes rate & volume) | Flood Storage
Soils, Floodplains, &
Wetlands | Water Quality
Improvement | | |---|--|--|------------------------------|--| | Confining or low
permeability deposit on
steep slope | Very Low | Very Low | Very Low | | | Confining or low perm.
deposit on terrace or
low gradient slope | Low | Low | Moderate | | | Aquifer or high
permeability deposit on
steep slope | Low (depends on thickness) | Low to Moderate
(depends on thickness) | Low | | | Aquifer or high perm deposit on terrace or low gradient slope: use aquifer thickness overlay and do relative comparison | High for thick aquifer deposit Moderate for intermediate thickness Low to Mod for areas of thin deposits | High
Moderate
Low to Mod | High | | | Depressions with
Mineral Deposit | Mod to High (Sandy outwash
Deposit beneath mineral soils) | High | High | | | Depressions with
Organic Deposits | Mod to High (Sandy outwash
Deposit beneath mineral soils) | High | Very High | | | Floodplains – glacially
formed | Low to Moderate | Very High | Mod to High | | ## Step 3 - Identify measures to protect and restore ecosystem-wide processes and ecological functions - Identify objectives and measures for protection and restoration in the sub-basin - Overlay current project information - Evaluate what is not being addressed - Identify additional measures to restore processes 45 #### Identify Objectives - Dakota Sub-basin Protection & Low summer Potential: cover and organism. of drained of highest recharge function depressional tilled soils Existing: Water Water quality Restore wetlands of drained Water quality shellfish beds. the watershed 46 on steep slopes | lden | tify Obje | ectives - | - Dako | ta Sub-k | oasin | |---|--|--|--|---|--| | Relevant Process & or Function – Unaltered Conditions | Existing or
Potential
Environmental
Issue | Altered
Functions
and
Processes | Protection &
Restoration
Objectives | Protection
Mechanism &
Measures | Restoration
Mechanism | | Low summer
baseflow
Recharge
function is low to
moderate over
large area of
watershed | Potential:
Reduced diversity
of aquatic
organism.
Increased
mortality of
smolts. | Recharge
function is
reduced in areas
of drained
depressional
wetlands and
tilled soils | Maximize
recharge by
increasing
infiltration
Maintain
groundwater
quantities | Protect depressional wetlands in upper watershed Minimize effects of impervious cover in in areas of mod to high recharge Ensure gw pumping doesn't interrupt flow to streams. | Remove effects of
drainage from
wetlands in areas
of highest
recharge function | | Reduced tidal
flushing Water quality
function is
high for most of
the watershed
except for
confining units | Existing: Water quality impacts. Closure of Drayton harbor shellfish beds. Reports of harmful algal blooms. Cause – fecal coliform and nutrients | Water quality
function is
reduced in areas
of drained
wetlands, tilled
soils, and
cleared forest
/shrub cover | Maximize
residence time | Protect existing
depressional
wetlands &
forest cover | Restore wetlands
below areas with
highest degree of
alteration
Restore
forest/shrub cover | | (cont.) | | | | | | | | |--------------------------------------|--|------------------------------|--|--|--|--|--| | Relevant
Process & or
Function | Existing or
Potential
Environme
ntal Issue | Alteration
to
Process | Threat or
Cause of
Alteration | Protection & Restoration Objectives | Protection –
Mechanism &
Measures | Restoration
Mechanism | | | Peak Flows | Potential:
Reduced
diversity of
aquatic
organisms
in fresh
water
areas,
(structural
complexity
reduced)
and | Increased
runoff | Tilling of soils
in confining
layer
Impervious
surfaces -
development | Maximize infiltration in areas of confining formation | Retain
existing forest
cover Minimize
effects of
impervious
cover in
confining
areas. | Increase
native forest
cover in
areas of low
performance
recharge
function | | | Flood Storage
(potential) | increased
transport
of nutrients
&
pollutants
to estuary. | Loss of
storage
volume | Drainage of
depressional
wetlands | Maximize
residence
time? (really
maximize or
restore
storage
capacity/
volum) | Protect
depressional
wetlands in
areas of
confining
formation
(low
performance
of flood
function) | Restore
wetlands in
areas of
confining
formation. | | | Identify Objectives – California Creek Watershed (cont.) | | | | | | | |--|--|--|--|--|--|--| | Critical Process
or Function –
Unaltered
Conditions | Existing or
Potential
Environmental
Issue | Altered
Functions and
Processes | Protection &
Restoration
Objectives | Protection –
Mechanism &
Measures | Restoration
Mechanism | | | Discharge in
large organic
deposit and
surface and
subsurface flows
from deposit into
California Creek | Potential: If this water flow process is altered, it could significantly affect baseflows in California Creek. | Organic deposit has been channelized converting subsurface flows to surface and reducing hydrology in large portions of deposit and performance of wetland functions | Protect
subsurface
flows,
including
movement of
flows through
deposit and
discharge to
California
Creek.
Restore
hydrology to
drained
portions of
organic
deposit | Protect large organic deposit in upper watershed of California Creek Protect lands in Dakota Creek that support this water flow Minimize impervious cove.r Retain native cover | Restore hydrology
to drained portions
of organic deposit
by reducing area
drained by ditches
and field tiles. | | | | | | | | 52 | | ### Review Existing Restoration Plans and Projects - Determine if they meet listed objectives & which ones - Determine which objectives still need to be addressed - Identify measures to address those objectives 57 High Priority Restoration Area for Dakota Creek - Outside of Shoreline Jurisdiction – Intersection of Sunrise Road and Dakota Creek – Site Identified by Multi-Purpose Storage Grant project Delta Line Rd. Rdtd DOE Sampling Station #14 Potential Restoration Area S24 T40N R1E S19 T40N R2E Figure 16. Potential wetland restoration area for Dakota Creek. Downstream of this restoration area is primarily forested and therefore with less restoration potential.